vector length

[SQA] 1. The vectors p, q and r are defined as follows:

$$p = 3i - 3j + 2k, q = 4i - j + k, r = 4i - 2j + 3k.$$

- (a) Find 2p q + r in terms of i, j and k.
- (*b*) Find the value of |2p q + r|.

Part	Marks	Level	Calc.	Content	Answer	U3 OC1
<i>(a)</i>	1	С	CN	G18		1989 P1 Q3
(b)	2	С	CN	G16		
• ¹ 6 • ² 1 • ³ 1	$\frac{i-7j+6k}{\left(6^2+\left(-7\right)^2\right)^2}$	¹ +6 ²				

[SQA] 2. A cuboid crystal is placed relative to the coordinate axes as shown.

- (a) Write down \overrightarrow{BC} in component form.
- (b) Calculate $|\overrightarrow{BC}|$.

Part	Marks	Level	Calc.	Content	Answer	U3 OC1
<i>(a)</i>	1	С	CN	G16		1990 P1 Q5
(<i>b</i>)	1	С	CN	G16		
• ¹ B	$\vec{BC} = \begin{pmatrix} 4 \\ 2 \\ -3 \end{pmatrix}$					
• ² \	/29					

1 2

[SQA] 3. A is the point (-3,2,4) and B is (-1,3,2). Find

(a) the components of vector \overrightarrow{AB} ;

(b) the length of AB.

Part	Marks	Level	Calc.	Content	Answer	U3 OC1
<i>(a)</i>	1	С	CN	G16		1993 P1 Q1
(b)	2	С	CN	G16		
$\cdot^1 \left(\begin{array}{c} \cdot^2 \\ \cdot^2 \\ \cdot^3 \\ \cdot^3 \end{array} \right)$	$ \frac{2}{1} \\ -2 \\ (-3+1)^2 $	+ (2-3) ²	² + (4-)	2) ²		

[SQA] 4. The diagram shows a point P with coordinates (4, 2, 6) and two points S and T which lie on the x-axis. If P is 7 units from S and 7 units from T, find the coordinates of S and T.

Part	Marks	Level	Calc.	Content		Answer			U3 OC1
	3	A/B	CN	G16					1994 P1 Q18
•1	(x,0,0)	or equiv.	h	OR	•1	$PQ = \sqrt{40}$	OR	•1	$d^2 = 7^2 - 6^2 - 2^2$
•2	$(x-4)^2 +$	+ 4 + 36 =	49 or ec	quiv.	•2	<i>d</i> = 3		.2	<i>d</i> = 3
•3	<i>x</i> = 1, 7				•3	(1,0,0), (7,0,0)		•3	(1,0,0), (7,0,0)

[SQA] 5. Vectors p, q and r are defined by

p=i+j-k, q=i+4k and r=4i-3j.

- (a) Express p q + 2r in component form.
- (b) Calculate p.r
- (c) Find |r|.

Part	Marks	Level	Calc.	Content		Answer	U3 OC1			
<i>(a)</i>	2	С	CN	G16			1998 P1 Q3			
<i>(b)</i>	1	С	CN	G26						
(C)	1	С	CN	G16						
۰ <i>ب</i>	• $p = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, q = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}, r = \begin{pmatrix} 4 \\ -3 \\ 0 \end{pmatrix}, s/i \ by \cdot^2$ • ³ 1									
•² (8 -5 -5				•	* 5				

[SQA]
 6. The line AB is divided into 3 equal parts by the points C and D, as shown. A and B have coordinates (3, -1, 2) and (9, 2, -4).

(a) Find the components of
$$\overrightarrow{AB}$$
 and \overrightarrow{AC} .

(b) Find the coordinates of C and D.

Part	Marks	Level	Calc.	Content	Answer	U3 OC1	
<i>(a)</i>	2	С	CN	G16		1998 P1 Q5	
<i>(b)</i>	2	С	CN	G16			
•1	$\vec{AB} = \begin{pmatrix} 6 \\ 3 \\ -6 \end{pmatrix}$		•3	C = (5, 0, 0)			
•2	$\vec{AC} = \begin{pmatrix} 2\\1\\-2 \end{pmatrix}$		•*	D = (7,1,-2)			

[SQA] 7. Relative to a suitable set of co-ordinate axes with a scale of 1 unit to 2 kilometres, the positions of a transmitter mast, ship, aircraft and satellite dish are shown in the diagram below.
 R (7, -4, 7.5)

The top T of the transmitter mast is the origin, the bridge B on the ship is the point (5, 5, -0.5), the centre C of the dish on the top of a mountain is the point (14, 4, 1) and the reflector R on the aircraft is the point (7, -4, 7.5).

(a)	Find the distance from the bridge of the ship to the reflector on the	
	aircraft.	(3)
(b)	Three minutes earlier the aircraft was at the point M(-2, 4, 8.5). Find the	
	speed of the aircraft in kilometres per hour.	(2)
(c)	Prove that the direction of the beam TC is perpendicular to the direction	
	of the beam BR.	(3)
(d)	Calculate the size of angle TCR.	(5)

Part	Marks	Level	Calc.	Content	Answer		U3 OC1
(<i>a</i>)	3	С	CR	G16			1992 P2 Q2
(b)	2	С	CR	G16			
(C)	3	С	CR	G27			
(<i>d</i>)	5	С	CR	G28			
(a)	• Strate • $\overrightarrow{BR} =$ • BR	gy: use v $\begin{pmatrix} 2\\7\\4 \end{pmatrix}$ or 1 er $l = \sqrt{115.2}$ ver	ectors or $BR^2 = 2^2$	3-D distance formula +7 ² + 4 ² uivalent	a (d) •5 •1	Strategy: know $\cos T\hat{C}R = \frac{T\hat{C}}{ TC }$ $\vec{T}C = \begin{pmatrix} 12\\ -4\\ 1 \end{pmatrix}$ an	w to use $\frac{\overrightarrow{RC}}{ RC }$ or equiv. and $\overrightarrow{RC} = \begin{pmatrix} 5\\ -6\\ -2 \end{pmatrix}$
(c)	• ⁶ know • ⁷ $\overrightarrow{TC}.\overrightarrow{B}$ • ⁸ comm	to use a $\vec{R} = 0$ nunicatio	scalar pr n: 0 ⇔ p	oduct perpendicularity	•	$\sqrt[1]{161} \text{ and } \sqrt[4]{65}$ $\overrightarrow{TC} \cdot \overrightarrow{RC} = 82$ $(3) 36.7^{\circ}$	

- ^[SQA] ^{8.} With coordinate axes as shown, the point A is (2,4,6).
 - (a) Write down the coordinates of B,C and D.
 - (b) Show that C is the midpoint of AD.
 - (c) By using the components of the vectors OA and OB, calculate the size of angle AOB, where O is the origin.
 - (d) Hence calculate the size of angle OAB.

Part	Marks	Level	Calc.	Content	Answer	U3 OC1
<i>(a)</i>	3	С	CR	G16		1994 P2 Q3
<i>(b)</i>	1	С	CR	G25		
(C)	4	С	CR	G28		
(<i>d</i>)	2	С	CR	CGD		

- (a) \bullet^1 One of B, C or D
 - •² Remaining two of B, C and D

(b)
$$\bullet^4 \left(\frac{2+6}{2}, \frac{4+2}{2}, \frac{6+2}{2}\right)$$

44°

(c) •⁵
$$\cos A\hat{O}B = \frac{\overrightarrow{OA} \cdot \overrightarrow{OB}}{|\overrightarrow{OA} | \overrightarrow{OB} |}$$
 or $\frac{OA^2 + OB^2 - AB^2}{2 \times OA \times OB}$ or equivalents

•⁶
$$\overrightarrow{OA} \cdot \overrightarrow{OB} = 40 \text{ or } AB^2 = 32$$

•⁷ $OA = \sqrt{56} = OB$

 9 strategy: e.g. use isosceles Δ

•¹⁰ 68°

(d)

[SQA] 9. The first four levels of a stepped pyramid with a square base are shown in Diagram 1.

Each level is a square-based cuboid with a height of 3 m. The shaded parts indicate the steps which have a "width" of 1 m.

The height and "width" of a step at a corner are shown in the enlargement in Diagram 2.

With coordinate axes as shown and 1 unit representing 1 metre, the coordinates of P and A are (12, 0, 0) and (24, 0, 0).

(a) Find the coordinates of Q and R.(2)(b) Find the size of angle QPR.(7)

Part	Marks	Level	Calc.	Content	Answer	U3 OC1						
<i>(a)</i>	2	С	CR	G16		1996 P2 Q3						
<i>(b)</i>	7	C	CR	G28								
(a)	• ¹ Q=	(2,2,9)										
	• ² $R = (21, 3, 12)$											
(b)	• ³ cost	$\theta = \frac{a.b}{ a b } u$	vith some	subsequent use								
	eg c	$\cos QPR =$										
	\rightarrow	(-10)	5 E	$\rightarrow (9)$								
	•* PQ =	= 2	•	$PR = \begin{bmatrix} 3 \\ 12 \end{bmatrix}$								
	-	(9)		(12)								
	• ⁶ PQ	l= √185										
	$\cdot^7 \overrightarrow{PR}$	l= √234										
	$\bullet^8 \stackrel{\rightarrow}{PO}$.	$\overrightarrow{PR} = 24$										
	•9 QPR	$R = 83 \cdot 4^{\circ}$										

- [SQA] 10. A triangle ABC has vertices A (2, -1, 3), B(3, 6, 5) and C (6, 6, -2).
 - (a) Find \overrightarrow{AB} and \overrightarrow{AC} .
 - (b) Calculate the size of angle BAC.
 - (c) Hence find the area of the triangle.

Part	Marks	Level	Calc.	Content	Answ	ver		U3 OC1	
<i>(a)</i>	2	С	CR	G16				1998 P2 Q1	
(b)	5	С	CR	G28					
(C)	2	С	CR	CGD					
(<i>a</i>)	• ¹ \overrightarrow{AB} =	$= \begin{pmatrix} 1 \\ 7 \\ 2 \end{pmatrix}$							
	• ² → AC =	$= \begin{pmatrix} 4 \\ 7 \\ -5 \end{pmatrix}$							
(<i>b</i>)	• ³ cos l	$\hat{A}C = -\frac{1}{1}$	$\vec{AB} \cdot \vec{AC}$ $\vec{AB} \mid \mid \vec{AC}$	stated or implied b responses to •4 to •	y 7				
	• ⁴ \overrightarrow{AB} .	$\overrightarrow{AC} = 4 +$	49–10						
	• ⁵ \overrightarrow{AB} =	= √54			(c)	•8	identify 2 sides and in	cluded angle	
	• AC	= \sqrt{90}					e.g. √54, √90, BÂC		
	• ⁷ BÂ	C = 51 · 9°	i.			•9	27 · 4		

- A model of a crystal was made from a cube [SQA] 11. y R(3,3,0) of side 3 units by slicing off the corner at AZ. B P to leave a triangular face ABC. Coordinate axes have been introduced × A 0 P(3,0,0) as shown in the diagram. The point A divides OP in the ratio 1:2. Points B and C similarly divide RP and C SP respectively in the ratio 1:2. S(3,0,-3)
 - (a) Find the coordinates of A, B and C.
 - (b) Calculate the area of triangle ABC.
 - (c) Calculate the percentage increase or decrease in the surface area of the crystal compared with the cube.

Part	Marks	Level	Calc.	Content	Answer	U3 OC1						
<i>(a)</i>	3	С	CR	G25		1993 P2 Q5						
<i>(b)</i>	4	С	CR	G16, CGD								
(C)	5	C	CR	CGD								
(a)	•1 A(1,0),0)										
	• ² B(3,2	2,0)										
	• ³ C(3,0),-2)										
(b)	 ⁴ strategy for area of triangle and attempt to calculate parts 											
	• ⁵ 60° (5^{5} 60° or altitude = $\sqrt{6}$										
	• ⁶ side	= 2√2										
	• ⁷ using	g chosen	formula	correctly								
(c)	• ⁸ 54 un	it ² for cu	be									
	• ⁹ know	how to	calculate	s.a of crystal								
	• ¹⁰ area	of 1 penta	ngonal fa	ce = 7 unit ²								
	• ¹¹ 51.5 unit ² for crystal (48 + $2\sqrt{3}$)											
	• ¹² strate	egy for fir	nding %	decrease								

(5)

(3)

(4)

[SQA] 12. A box in the shape of a cuboid is designed with **circles** of different sizes on each face.

The diagram shows three of the circles, where the origin represents one of the corners of the cuboid. The centres of the circles are A(6,0,7), B(0,5,6) and C(4,5,0).

Find the size of angle ABC.

Part	Marks	Level	Calc.	Content	Answer	U3 OC1
	5	C	CR	G17, G16, G22		2001 P2 Q4
	2	A/B	CR	G26, G28	71.5°	
• ¹ ss: use $\frac{\overrightarrow{BA}.\overrightarrow{BC}}{ \overrightarrow{BA} \overrightarrow{BC} }$ • ² ic: state vector e.g. \overrightarrow{BA} • ³ ic: state a consistent vector e.g. \overrightarrow{BC} • ⁴ pd: process $ \overrightarrow{BA} $ • ⁵ pd: process $ \overrightarrow{BC} $ • ⁶ pd: process scalar product • ⁷ pd: find angle					• ¹ use $\frac{\overrightarrow{BA}.\overrightarrow{BC}}{ \overrightarrow{BA} \overrightarrow{BC} }$ stated or impl • ² $\overrightarrow{BA} = \begin{pmatrix} 6\\ -5\\ 1 \end{pmatrix}$ • ³ $\overrightarrow{BC} = \begin{pmatrix} 4\\ 0\\ -6 \end{pmatrix}$ • ⁴ $ \overrightarrow{BA} = \sqrt{62}$ • ⁵ $ \overrightarrow{BC} = \sqrt{52}$ • ⁶ $\overrightarrow{BA}.\overrightarrow{BC} = 18$ • ⁷ $A\overrightarrow{BC} = 71.5^{\circ}$	ied by ● ⁷

[SQA] 13. The position vectors of the points P and Q are p = -i + 3j + 4k and q = 7i - j + 5k respectively.

- (a) Express \overrightarrow{PQ} in component form.
- (b) Find the length of PQ.

Part	Marks	Level	Calc.	Content	Answer	U3 OC1
<i>(a)</i>	2	С	CN	G18, G16		1997 P1 Q4
(b)	1	С	CN	G16		
•1	$q - p = 8i - \frac{1}{3}$ or $p = \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix}$	$\left(\begin{array}{c} 4j+k\\ -\frac{1}{2} \end{array} \right), q = \left(\begin{array}{c} -\frac{1}{2}\\ -\frac{1}{2} \end{array} \right)$	$\begin{pmatrix} 7\\1\\5 \end{pmatrix}$	• ² • ³	$\vec{PQ} = \begin{pmatrix} 8\\ -4\\ 1 \end{pmatrix}$	

[SQA] 14. The diagram shows the rhombohedral crystal lattice of calcium carbonate.

(4)

(6)

The three oxygen atoms P, Q and R around the carbon atom A have coordinates as shown below.

- (a) Calculate the size of angle PQR.
- (b) M is the midpoint of QR and T is the point which divides PM in the ratio 2:1.
 - (i) Find the coordinates of T.
 - (ii) Show that P, Q and R are equidistant from T.
- (c) The coordinates of A are (2, 3, 1).
 - (i) Show that P, Q and R are also equidistant from A
 - (ii) Explain why T, and not A, is the centre of the circle through P, Q and R. (2)

Part	Marks	Level	Calc.	Content	Answe	er	U3 OC1
<i>(a)</i>	4	С	CN	G28			1995 P2 Q5
(b)	6	С	CN	G25, G16			
(C)	1	С	CN	G16, G1			
(C)	1	A/B	CN	G16, CGD			
(a)	• ¹ PQ=	$=\sqrt{8}, R\zeta$	$2=\sqrt{8}$,				
	• ² Use • ³ $\begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix}$ • ⁴ 60°	s.p.: \overrightarrow{PQ} $\begin{pmatrix} 2\\ -2\\ 0 \end{pmatrix} = 4$		PQI.IRQIcosθ			
(b)	• ⁵ M • ⁶ \overrightarrow{PT} • ⁷ \overrightarrow{PT}	$= (2,3,2)$ $= \frac{2}{3} \overrightarrow{PM} = \frac{2}{3} (-1)$ $= \frac{2}{3} (-1)$ $= \frac{2}{3} (-1)$ $= \frac{2}{3} (-1)$	or equiva or equiv	alent 7.	• ⁹ • ¹⁰ (c) • ¹¹	$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} + (y_1 - y_2)^2 + y_2$ stated or implied $PT = 2\sqrt{\frac{2}{3}}, QT = 2\sqrt{\frac{2}{3}}, RT$ or equivalent $PA = QA = RA = \sqrt{3}$	$\left(z_1 - z_2\right)^2$ $r = 2\sqrt{\frac{2}{3}}$
	•° T =	$(\frac{7}{3},\frac{10}{3},\frac{4}{3})$)		• ¹²	A is in a different plane	

	T			1			
Part	Marks	Level	Calc.	Content	Answer	U3 OC1	
<i>(a)</i>	7	С	CR	G28, G16		1991 P2 Q5	
(b)	3	С	CR	CGD			
(a)	• ¹ \overrightarrow{VF} • ² E = • ³ \overrightarrow{VE} • ⁴ cose • ⁵ \overrightarrow{VE} . • ⁶ \overrightarrow{VE} • ⁷ 11.4	$= \begin{pmatrix} 1 \\ 1 \\ -10 \end{pmatrix}$ $(2,0,-7)$ $= \begin{pmatrix} 1 \\ -1 \\ -10 \end{pmatrix}$ $\vec{VF} = \frac{\vec{VE}}{ \vec{VE} }$ $\vec{VF} = 100$ $ \vec{VF} = 1$. <u>.vf</u> T IVFI T	(b) his may appear as $\frac{100}{102}$	 ⁸ ¹/₂ VE × VF sin EVF ⁹ ¹/₂ × 102 × sin 11.4° ¹⁰ 10.02 after the completion of •⁵ and •⁶. 		

[END OF QUESTIONS]